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Abstract

This thesis addresses the challenge of weakly supervised point cloud semantic segmen-
tation by leveraging multi-modal information and introducing novel pseudo-labeling
techniques. The objective is to reduce the laborious and time-consuming manual
annotation process while maintaining competitive segmentation performance.

Existing state-of-the-art methods primarily focus on leveraging 3D modalities, such as
point clouds and voxels, while disregarding the readily available 2D modality, including
RGB images and depth maps. In contrast, this thesis proposes a comprehensive ap-
proach that integrates 2D RGB-D information into the pseudo-labeling and contrastive
learning methods.

The proposed methodology exploits the geometric information derived from 2D-3D
correspondences to establish consistency between the segmentation results of 2D and
3D modalities across the scene. To address the issue of sparse labels and enhance
class representations, oversegmentation is employed to generate supervoxels and
superpixels. The sparse labels are then propagated into the oversegmented regions,
effectively increasing the label count. By matching supervoxel features with their
corresponding superpixels in the embedding space, the proposed methodology enforces
2D-3D consistency throughout the scene. Furthermore, the sparse labels are leveraged to
enforce consistency among supervoxels sharing the same label. Through the integration
of 2D-3D consistency and contrastive learning, a robust online adaptive pseudo-labeling
mechanism is introduced, eliminating the need for an additional network for pseudo-
label generation.

Extensive experiments are conducted on popular datasets, including ScanNetv2
and 2D-3D-S, to validate the effectiveness of the proposed multi-modal integration,
contrastive learning, and pseudo-labeling approaches. The experimental results demon-
strate the superior performance and efficiency of the proposed methodology compared
to existing methods, highlighting its potential for reducing manual annotation efforts
and improving weakly supervised point cloud semantic segmentation.
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1 Introduction

Semantic labeling of point clouds plays a crucial role in various applications, such as
autonomous driving, robotics, and augmented reality. However, the manual annotation
of point clouds is a labor-intensive and time-consuming process, which poses significant
challenges in obtaining fully labeled datasets for training accurate segmentation models.
To address this limitation, there has been a growing interest in leveraging weakly
labeled or unlabeled data for point cloud semantic segmentation.

Recent advancements in weakly supervised 3D semantic segmentation have focused
on techniques such as contrastive learning and pseudo-labeling. These approaches,
such as Semantic Query Network (SQN) [1], One Thing One Click (OTOC) [2], and
PointMatch [3], aim to achieve competitive segmentation results using a limited number
of sparse labels. However, existing state of the art (SOTA) methods predominantly rely
on 3D modalities, such as point clouds, while disregarding the available 2D modality,
including RGB images and depth maps.

In this thesis, we propose a novel approach that integrates multi-modal information
and introduces advanced pseudo-labeling techniques for weakly supervised point cloud
semantic segmentation. Our methodology capitalizes on the geometric information
derived from 2D-3D correspondences to establish consistency between the segmentation
results of the 2D and 3D modalities. By incorporating the rich texture, color, and
geometrical information provided by the 2D modality and combining it with the
structural information present in the 3D point clouds, our approach aims to enhance
the accuracy and comprehensiveness of point cloud segmentation.

The key contributions of this thesis can be summarized as follows:

• We propose a comprehensive framework that incorporates multi-modal infor-
mation into the contrastive learning process. By leveraging oversegmentation,
including the generation of supervoxels and superpixels, we address the issue
of sparse labels and enhance class representations. This approach increases the
label count and establishes consistency between supervoxels and superpixels
by exploiting the geometric information derived from 2D-3D correspondences.
These strategies result in a more robust and informative latent space construction,
improving the overall performance of our contrastive framework.

• We incorporate the 2D modality, consisting of RGB images and depth maps, into

1



1 Introduction

the pseudo-labeling process. This integration enriches the feature representation
and captures fine-grained details in the scene. By leveraging the complementary
information provided by RGB images and depth maps, our approach generates
more accurate and reliable confidence pseudo-labels. These confidence pseudo-
labels guide the learning process and enhance the segmentation performance of
our approach.

• We introduce an online adaptive pseudo-labeling mechanism that dynamically
adapts to the evolving model predictions. This mechanism eliminates the need
for an additional network for pseudo-label generation, making the process more
efficient and scalable.

• Extensive experiments are conducted on popular datasets, including ScanNetv2 [4]
and 2D-3D-S [5], a superset of S3DIS [6], to evaluate the effectiveness of our
proposed methodology. The experimental results demonstrate the superior per-
formance and efficiency of our approach compared to existing methods.

This thesis contributes to the field of weakly supervised point cloud semantic segmen-
tation by incorporating multi-modal information and introducing advanced pseudo-
labeling techniques. Our proposed methodology addresses the limitations of existing
methods and achieves competitive segmentation results while reducing the reliance
on costly manual annotation. By leveraging the 2D and 3D modalities, our approach
demonstrates the potential for efficient and accurate point cloud semantic segmentation
in various real-world applications.

The outline of the rest of the thesis is as follows:

• Chapter 2 provides the necessary foundational information to understand the
subsequent chapters.

• Chapter 3 presents an overview of the related work that has been conducted in
the field.

• Chapter 4 outlines the methodology proposed in this thesis, covering preprocess-
ing steps, feature extraction, contrastive learning, and pseudo-labeling.

• Chapter 5 presents a comprehensive comparison of our methodology with SOTA
methods on various publicly available datasets, accompanied by detailed ablation
studies that analyze and compare different components of our approach.

• Finally, Chapter 6 summarizes our findings, recaps the key contributions of the
thesis, and proposes future research directions.
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2 Background

In this Background chapter, we provide key information that will help readers under-
stand the rest of the thesis. We aim to give a general overview, focusing on important
concepts rather than detailed specifics. This foundational knowledge will assist readers
in navigating and understanding the rest of our work.

2.1 Point Clouds

A point cloud is a collection of data points in a 3D coordinate system, typically defined
by X, Y, and Z coordinates, representing the external surface of an object, while also
potentially encapsulating attributes such as color, intensity, and surface normal details.
An example point cloud can be seen in Figure 2.1.

Figure 2.1: An example point cloud, which is a collection of 3D data points representing
the external surface of objects.

In the past few years, high-quality 3D representations of the world, known as point
clouds, have been obtained through expensive sensors such as a LiDAR; however, the
emergence of affordable 3D sensors such as the Kinect sensor for the Microsoft Xbox
360 has revolutionized the accessibility of point clouds, making it possible for most
future robots to perceive the world in 3D [7].
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2 Background

2.2 Semantic Segmentation

Semantic segmentation is a fundamental computer vision technique that plays a crucial
role in understanding the content and structure of images or 3D scenes. By partitioning
images or point clouds into coherent regions and assigning semantic labels to each
region, semantic segmentation enables machines to recognize and differentiate between
various objects or regions of interest. This fine-grained analysis allows for a compre-
hensive understanding of scene composition, facilitating tasks such as object detection,
image understanding, and scene reconstruction.

Figure 2.2: Semantic segmentation involves the task of assigning each pixel or point in
a 2D image or 3D point cloud a semantic label.

4



2 Background

As can be seen from Figure 2.2, in 2D semantic segmentation classifying pixels based
on their semantic content provides a pixel-wise labeling of the image. On the other hand,
3D semantic segmentation extends this analysis to encompass three-dimensional data
representations, such as point clouds. By associating semantic labels with individual
points, 3D semantic segmentation allows for a detailed analysis of spatial environments,
enabling applications in autonomous driving, robotics, virtual reality, and augmented
reality.

Semantic segmentation has witnessed significant advancements in recent years,
with the development of deep learning models that can effectively learn and extract
meaningful features from images or point clouds. These models leverage Convolutional
Neural Network (CNN) and other architectural variations to achieve SOTA performance
in various semantic segmentation tasks.

2.3 Sparse Convolutions and Their Applications

CNN have been highly successful in various computer vision tasks, including semantic
segmentation. However, their application to large-scale 3D data, such as point clouds,
can be computationally demanding due to the inherent sparsity and irregularity of the
data.

Sparse convolutions provide a solution for efficiently processing sparse data by
selectively operating only on the non-zero or relevant elements, significantly reduc-
ing computational requirements. A general sparse tensor creation can be seen in
Algorithm 1.

Algorithm 1 Sparse Tensor Creation

1: procedure CreateSparseTensor(Point Cloud Data)
2: Initialize an empty list of values X and coordinates C
3: for each point p in the point cloud data do
4: Compute the value v and coordinate c for the point p
5: Append the value v to X and the coordinate c to C
6: end for
7: return the sparse tensor X with coordinates C
8: end procedure

Instead of applying convolutions across the entire input space, sparse convolutions
target specific regions or points, enabling more efficient analysis of sparse data repre-
sentations.

Sparse convolutions have found applications in various domains, including 3D

5



2 Background

semantic segmentation. By exploiting the sparsity of point clouds or other 3D data
representations, sparse convolutions allow for more efficient and accurate analysis of
the data. These techniques enable the processing of large-scale point clouds without
requiring dense voxelization or excessive memory consumption.

Furthermore, sparse convolutions facilitate the integration of contextual information
from neighboring points or regions, enhancing the model’s ability to capture long-
range dependencies and improve semantic segmentation performance. The selective
aggregation of information based on spatial proximity enables more effective analysis
of local structures and global context within the sparse data.

Several architectures and models have been developed to leverage sparse convolutions
for 3D semantic segmentation, such as Submanifold Sparse Convolutional Networks
(SSCN) [8], and Minkowski Convolutional Neural Networks (MCNN) [9]. These
models incorporate sparse convolutions as a fundamental building block, allowing
them to efficiently process point clouds and achieve SOTA performance in 3D semantic
segmentation tasks.

2.3.1 The Minkowski Engine

The Minkowski Engine [9] is a software framework specifically designed for efficient
sparse tensor computations, particularly in the context of 3D data analysis. It pro-
vides a powerful tool for processing sparse data, such as point clouds, using sparse
convolutions.

The Minkowski Engine [9] utilizes sparse tensors, which are data structures optimized
for storing and manipulating sparse data. A sparse tensor consists of a set of non-zero
values X along with their corresponding coordinates C as explained in Algorithm 1. In
the context of 3D data, these coordinates typically represent the spatial locations of the
non-zero values.

The Minkowski Engine [9] enables efficient sparse convolution operations by lever-
aging the sparse tensor representation. Let us consider a sparse tensor X with its
corresponding coordinates C. Sparse convolutions involve applying a set of learnable
filters or kernels to the sparse tensor. Each filter is associated with its own weight
parameters W.

The sparse convolution operation can be defined as follows:

xu = ∑
i∈N D(u,K,C in)

Wixi+u for u ∈ Cout (2.1)

where K represents the kernel size, C in is the predefined input coordinates of sparse
tensor before the convolution operation, Cout is the predefined output coordinates of
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2 Background

sparse tensor after the convolution operation, and N D(u, K, C in) is the set of offsets
that are at most

⌈ 1
2 (K− 1)

⌉
away from u defined in C in [9].

The Minkowski Engine [9] employs a mapping mechanism called kernel maps to
represent how a sparse tensor is transformed into another sparse tensor using spatially
local operations like convolution or pooling. For instance, in a 2D convolution with a
kernel size of 3, a 3× 3 convolution kernel consists of 9 weight matrices. Each kernel
maps certain input coordinates to corresponding output coordinates. The mapping is
represented as a pair of lists of integers: the in map (I) and the out map (O). In the in
map, an integer i ∈ I indicates the row index of the coordinate matrix or feature matrix
of an input sparse tensor. Similarly, in the out map, an integer o ∈ O indicates the row
index of the coordinate matrix of an output sparse tensor. The elements in the lists are
ordered in such a way that the k-th element ik in the in map corresponds to the k-th
element ok in the out map. Thus, (I → O) defines how the row indices of the input
feature FI map to the row indices of the output feature FO. This mapping mechanism
enables the Minkowski Engine [9] to efficiently perform operations on sparse tensors,
optimizing computation and memory usage.

By selectively operating only on the non-zero elements of the sparse tensors and
considering the neighboring coordinates, the Minkowski Engine [9] avoids unnecessary
computations on empty regions and significantly improves computational efficiency.

2.4 Oversegmentation

Oversegmentation is a widely used computational technique in the field of computer
vision and image processing. It involves dividing an image or a region into smaller
segments known as superpixels in 2D images and supervoxels in 3D point clouds.
The main purpose of oversegmentation is to capture fine details and boundaries,
providing a foundation for subsequent analysis tasks like object recognition, image
editing, and scene understanding. By employing clustering and grouping algorithms
based on various visual cues such as color, intensity, texture, spatial proximity, or even
geometric features, oversegmentation generates a more detailed representation of the
data. Importantly, this process is unsupervised, meaning it relies solely on intrinsic
characteristics of the image or point cloud, without the need for manual annotation
or extensive training. This intrinsic adaptability makes oversegmentation a valuable
tool, especially in scenarios where labeled data is limited or acquiring annotations is
prohibitively expensive.
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2.4.1 Superpixels

Superpixels are compact and contiguous regions formed by grouping similar pixels
together. They provide an intermediate representation that reduces the complexity of
subsequent segmentation tasks. Superpixels preserve local spatial relationships and can
be used to capture boundaries and structures more effectively than pixel-level analysis.

Various algorithms exist for generating superpixels, including simple and efficient
approaches such as Simple Linear Iterative Clustering (SLIC) [10], which operates in the
RGB color space and spatial coordinates. SLIC [10] partitions the image into compact
regions by optimizing a distance metric that considers both color similarity and spatial
proximity. Another popular algorithm is Superpixels Extracted via Energy-Driven
Sampling (SEEDS) [11], which performs a hierarchical clustering of pixels based on
color and texture information. Figure 2.3 shows the generated superpixels by different
superpixel generation algorithms.

(a) 2D RGB Image (b) SEEDS (c) SLIC

Figure 2.3: Superpixels generated by different superpixel generation algorithms. (a) Shows the
input 2D image. (b) shows the superpixels generated by SEEDS [11]. (c) shows the
superpixels generated by SLIC [10].

2.4.2 Supervoxels

Supervoxels extend the concept of superpixels to three-dimensional space. They are
employed in 3D scene analysis and segmentation tasks, where volumetric data, such as
point clouds or voxel grids, are divided into coherent regions.

Similar to superpixels, supervoxels are compact and perceptually homogeneous
regions that preserve local spatial relationships. They facilitate the extraction of mean-
ingful 3D structures and boundaries while reducing the complexity of subsequent
processing steps.

A notable work for generating supervoxels in an unsupervised fashion is Voxel
Cloud Connectivity Segmentation (VCCS) [12] which uses a region growing variant of
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k-means clustering. Also [13] proposed a supervised approach with graph-structured
deep metric learning. Figure 2.4 shows oversegmentation of a point cloud to generate
supervoxels.

Figure 2.4: Illustration of the oversegmentation process in a point cloud to generate
supervoxels. Supervoxels, as 3D extensions of superpixels, provide compact
and perceptually homogeneous regions that preserve local spatial relation-
ships, facilitating the extraction of meaningful 3D structures and boundaries.

2.5 Exploring the Principles of Contrastive Learning

Contrastive learning is an instrumental technique in self-supervised learning that
strives to build representations by contrasting similar and dissimilar instances within a
dataset. This methodology has received substantial attention in fields such as computer
vision and natural language processing, due to its aptitude for learning distinctive and
relevant features without explicit supervision.

2.5.1 An Introduction to Self-supervised Contrastive Learning

In the self-supervised contrastive learning paradigm, we construct positive and negative
pairs of samples from an unlabeled dataset and aim to train a model to distinguish
between them. As can be seen from Figure 2.5, the fundamental idea is to maximize
the similarity within positive pairs, and concurrently minimize the similarity within
negative pairs in the resulting feature space.

9
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Figure 2.5: Overview of the self-supervised contrastive learning. The goal is to maxi-
mize the similarity of positive pairs and minimize the similarity of negative
pairs in the latent space. Figure adapted from [14].

The contrastive loss function is frequently employed to train the model. This approach
encourages the model to confer higher similarity scores to positive pairs and lower
scores to negative pairs. Established methods such as SimCLR [15, 16] and MoCo [17,
18] leverage data augmentations to generate the positive and negative pairs, treating
two differently augmented versions of the same image as a positive pair.

2.5.2 Transitioning to Supervised Contrastive Learning

Self-supervised contrastive loss assumes a lack of ground truth label information
for generating positive and negative pairs. This is where the supervised contrastive
learning approach, as proposed by Supervised Contrastive Learning (SupContrast) [19],
diverges. Unlike SimCLR [15, 16] and MoCo[17, 18], SupContrast [19] proposes to
utilize class labels to enhance the number of positive pairs. As can be seen from
Figure 2.6, this is achieved by selecting augmented images from the same class as
additional positive pairs, thereby making more efficient use of label information.

10



2 Background

Figure 2.6: Overview of the supervised contrastive learning. This approach leverages
class label information to increase the number of positive pairs by consider-
ing the class information. Figure adapted from [19].

2.6 The Concept and Application of Pseudo-Labeling

Pseudo-labeling is a powerful technique in machine learning that bridges the gap
between supervised and unsupervised learning paradigms by leveraging unlabeled
data to enhance model performance. In traditional supervised learning, models heavily
rely on labeled data for training, which can be scarce or expensive to obtain. Pseudo-
labeling tackles this challenge by harnessing the abundance of unlabeled data to
augment the training process.

The concept of pseudo-labeling revolves around assigning labels to unlabeled data
based on the predictions made by the model itself. During training, the model is
initially trained on the available labeled data to learn from the ground truth labels.
Subsequently, the trained model is applied to the unlabeled data, and class labels
are assigned based on the highest predicted probabilities, forming what is known as
pseudo-labels. The model is then fine-tuned using a combination of the original labeled
data and the newly pseudo-labeled data.

The application of pseudo-labeling offers several advantages. It enables the utilization
of large volumes of unlabeled data, which are often readily available in real-world
scenarios. By leveraging this additional data, models can learn more representative and
generalizable features, enhancing their ability to handle unseen samples. Moreover,
pseudo-labeling provides a cost-effective solution by reducing the reliance on manual
annotation, which can be time-consuming and costly.
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(a) Sparse labels (b) Generated pseudo-labels (c) Ground truth labels

Figure 2.7: A visual illustration of the pseudo-labeling process.

However, pseudo-labeling also poses challenges. The quality of the pseudo-labels
heavily relies on the accuracy of the model’s predictions, and errors in pseudo-labeling
can propagate during training, potentially leading to performance degradation. Thus,
careful attention must be given to the confidence and reliability of the generated
pseudo-labels to mitigate these issues.

Figure 2.7 provides a visual illustration depicting the impact of pseudo-labeling on a
scene with initially sparse labeling. Figure 2.7a showcases a scene with limited sparse
labels, indicating that only a small subset of data points has ground truth annotations.
This sparse labeling scenario often poses challenges for models to fully comprehend
the underlying patterns and relationships due to the scarcity of labeled guidance.

In contrast, Figure 2.7b shows the same scene after the application of pseudo-labeling,
demonstrating how pseudo-labeling can increase the training data by assigning labels
to previously unlabeled data points. These pseudo-labels are derived from the model’s
predictions on the unlabeled data, serving to augment the quantity and diversity of
training data. The visual contrast between the sparsely labeled and pseudo-labeled
scenes emphasizes the role of pseudo-labeling in expanding the training dataset and
potentially enriching the quality of learned features.
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3 Related Work

In this chapter, we look at important studies that have helped shape our work. We
begin with an examination of the evolution of fully supervised semantic segmentation
in both 2D and 3D, before moving on to an analysis of weakly supervised techniques.
Furthermore, we study prior research that delves into the use of contrastive learning
for point clouds.

3.1 Semantic Segmentation

3.1.1 Fully Supervised 2D Semantic Segmentation

Early works in semantic segmentation often relied on handcrafted features and classi-
fiers. For instance, the TextonBoost [20] utilizes texture-layout filters that incorporate
novel features derived from textons. These features enable the model to jointly capture
both the patterns of texture and their spatial arrangement. [21] proposes a two-stage
approach for figure/ground assignment in natural images using a conditional random
field (CRF). [22] proposes a probabilistic model for labeling images into a predefined
set of class labels using a generalization of the CRF approach. However, these methods
were limited by the discriminative power of handcrafted features.

The Fully Convolutional Network (FCN) [23] proposes a method for semantic seg-
mentation using fully convolutional networks that take input of arbitrary size and
produce correspondingly-sized output with efficient training and inference. They
adapt SOTA classification networks into fully convolutional networks by replacing the
fully connected layers and transfer their learned representations by fine-tuning to the
segmentation task.

An architecture that built upon the foundation laid by the FCN [23] is U-Net [24].
Initially developed for biomedical image segmentation, U-Net’s [24] symmetrical
contracting and expanding paths structure has found broad applicability due to its
ability to localize features accurately.

Expanding on U-Net’s [24] success, the ResU-Net [25] integrated residual connec-
tions from the ResNet [26], efficiently addressing the vanishing gradient problem and
enhancing information flow throughout the network. This modification has made
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ResU-Net [25] a potent tool for semantic segmentation, particularly when handling
detailed input images or tasks requiring high-precision segmentation.

Deconvolution Network [27] introduces a novel semantic segmentation algorithm
based on a learned deconvolution network. This network enables the generation of
dense and precise object segmentation masks by progressively reconstructing object
structures, overcoming limitations of fixed-size receptive fields and effectively han-
dling object scale variations. Segnet [28] employs an encoder-decoder architecture
with pooling indices, enabling efficient pixel-wise segmentation and accurate spatial
reconstruction.

DeepLab variants [29, 30, 31] combines deep convolutional networks with atrous
convolution and fully connected CRFs to achieve accurate and detailed segmentation
results. The use of atrous convolution allows for the integration of larger context while
maintaining computational efficiency, and the incorporation of fully connected CRFs
further refines the segmentation boundaries for improved localization. PSPNet [32]
incorporates a pyramid pooling module to capture multi-scale contextual information.

Attention mechanisms and transformer-based models have also been introduced to
semantic segmentation tasks in recent years. PSANET [33] incorporates point-wise
spatial attention to enhance scene parsing by selectively emphasizing informative
image regions. Dual Attention Network [34], adaptively integrates local features with
their global dependencies. Dense Prediction Transformer (DPT) [35] demonstrates the
effectiveness of employing Vision Transformer (ViT) [36] backbone as opposed to the
conventional CNN backbone.

3.1.2 Fully Supervised 3D Semantic Segmentation

For 3D semantic segmentation, the early pioneering methodologies were primarily
focused on the voxelization of point clouds. VoxNet [37] employed a volumetric
occupancy grid representation as their foundation and used a supervised 3D CNN.
OctNet [38] introduced a better memory-efficient representation using octrees. Further-
more, O-CNN [39] leveraged a novel octree structure, enabling more efficient processing
of 3D data with adaptive resolutions.

Simultaneously, point-based methods emerged to process raw 3D point clouds
directly. PointNet [40] captured the unique structural characteristics of irregular
and unordered point clouds. Building upon this work, PointNet++ [41] employed
hierarchical learning to capture local structures within point clouds.

Many other models utilized the properties of graphs or introduced novel convolutions
to process point clouds. For instance, DGCNN [42] leveraged the properties of graphs
to capture local geometric structures and allowed the model to adapt to various scales
and shapes. SpiderCNN [43] enhanced this by introducing parameterized convolutional
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filters, while PointWeb [44] focused on enhancing local neighborhood features.
As the size of 3D datasets grew, there was a need for efficient semantic segmenta-

tion methods for large-scale point clouds. RandLA-Net [45] addressed this need by
introducing an efficient neural architecture to directly extract per-point semantics for
large-scale point clouds.

Innovative architectures, like Deep Parametric Continuous Convolutional Neural
Networks [46], PointConv [47], and KPConv [48], introduce unique approaches to
convolutional operations, enabling more effective processing of 3D point clouds and
providing novel insights into handling their inherent irregularities. DualConvMesh-
Net [49] introduced geodesic convolutions for processing 3D meshes.

Attention mechanisms were also integrated into 3D semantic segmentation through
works like Graph Attention Convolution [50], which used graph attention mechanisms
to enhance feature learning from point clouds. Hierarchical Point-Edge Interaction
Network [51] and DeepGCNs [52] capitalized on the graph-like nature of point clouds
for robust and flexible learning.

Moreover, several studies explored the use of sparse convolutions for efficient 3D
segmentation. SSCN [8] and MCNN [9] are examples of this approach.

MCNN [9] presents a novel approach that utilizes sparse tensors and high-dimensional
convolutions to address the inefficiencies of dense representations in 3D scans, where
the majority of the space is empty. By representing non-empty space as coordinates
and associated features using sparse tensors, the proposed approach achieves efficient
storage and processing of high-dimensional data. The COO format is adopted for
sparse tensors, enabling neighborhood queries and differentiation of points in different
batches. Furthermore, the paper introduces a specialized library, Minkowksi Engine[9],
for sparse tensors, which is further discussed in detail in the background section 2.3.1.

In numerous research studies, the utilization of 2D modalities has been explored to
enhance the outcomes of 3D segmentation. In this regard, 3DMV [53] and Multi-view
PointNet [54] employ backprojection techniques to fuse 2D features with the original
3D features. Virtual Multi-view Fusion [55] generates multiple virtual views of a scene,
which are then fused with the 3D features.

Bidirectional Projection Network (BPNet) [56] leverages bidirectional projection mod-
ule (BPM) to facilitate the interaction between complementary 2D and 3D information
at various architectural levels. BPM is a key component of BPNet [56] for joint 2D
and 3D scene understanding. The BPM is designed to enable bidirectional interaction
between 2D and 3D visual domains by constructing skip connections between 2D and
3D sub-networks at the same decoder level. An overall architecture of BPNet [56] can
be seen in Figure 3.1.

As can be seen from Figure 3.2, BPM first constructs a link matrix L between points
and pixels according to the perspective projection from 3D to 2D space, given the 3D
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Figure 3.1: An overview of the BPNet [56] model architecture. The model leverages a
Bidirectional Projection Module (BPM) to facilitate the interaction between
2D and 3D information at various architectural levels, improving joint 2D
and 3D scene understanding. Figure adapted from [56].

scene and 2D image together with camera matrix M. Then, at multiple levels in the
decoder, the BPM not only projects the 3D features to 2D space but also backprojects 2D
features into 3D space according to the constructed link matrix. Finally, the projected
features are concatenated with the original features followed by a 1 × 1 convolution to
fuse them. This bidirectional interaction enables complementary information to flow
between the 2D and 3D domains, improving joint 2D and 3D scene understanding [56].

In the context of a 3D scene with multiple 2D views, the projection of 3D features
to each view can be achieved by utilizing the corresponding link matrix, as discussed.
However, when it comes to the transformation of multi-view 2D features to 3D space, a
fusion step becomes necessary after backprojection. While previous approaches like
3DMV [53] primarily rely on max-pooling for feature aggregation, BPNet [56] takes
a different approach. Specifically, BPNet [56] leverage the power of two-layer sparse
convolutions to effectively learn the impact factors associated with each view at every
point. These learned impact factors are subsequently employed to perform a weighted
sum of the backprojected features, facilitating a robust fusion of the multi-view 2D
features within the 3D space. With these contributions, BPNet [56] is the most advanced
and enhanced baseline to use for dealing with the fusion of 2D and 3D modalities while
also leveraging the usage of sparse tensor and sparse convolutions effectively by using
the Minkowski Engine[9]. For this reason, we utilized BPNet [56] as a backbone for
extracting the features from the 2D and 3D modalities.
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Figure 3.2: A detailed view of the Bidirectional Projection Module (BPM) used in the
BPNet model. BPM projects 3D features to 2D space and backprojects 2D
features into 3D space, enabling a bidirectional flow of information between
the two domains. Figure adapted from [56].

Recent advancements have begun to explore joint tasks in 3D semantic segmentation.
For instance, JSENet [57] proposed a joint semantic segmentation and edge detection
network for 3D point clouds, while OCCUseg [58] introduced occupancy-aware 3D
instance segmentation.

SOTA methods in 3D semantic segmentation include Swin3D [59], a pretrained
Transformer backbone specifically designed for 3D indoor scene understanding, and
Mix3D [60], a method that leverages out-of-context data augmentation to enhance 3D
scene understanding.

3.1.3 Weakly Supervised 3D Semantic Segmentation

In recent years, weakly supervised 3D semantic segmentation has gained significant
attention as a challenging problem in the field of computer vision. This area of research
aims to tackle the task of semantic segmentation in 3D data using limited or weak
forms of supervision. Several approaches have been proposed to address this challenge,
leveraging different strategies and techniques.

One notable work in the field of weakly supervised 3D semantic segmentation is
the SQN [1]. This paper presents a comprehensive framework that addresses the
challenge of limited supervision by leveraging the assumption of semantic similarity
between neighboring points in 3D space. The SQN [1] introduces a semantic query
approach, where representations of neighboring points are queried and their semantic
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similarity is considered to predict the final semantic labels. By incorporating this
wider label propagation strategy, the SQN [1] enables the sparse training signals to be
back-propagated to a larger spatial region, allowing for more comprehensive learning
and improving the segmentation performance under weak supervision.

PointMatch [3] explores the utilization of unlabeled data for consistency training
to enhance representation learning. This method adopts a scene-level augmentation
technique, which generates multiple views of the same scene, and exploits the first
augmented scene to generate pseudo-labels for subsequent scenes. By leveraging
consistency training, PointMatch [3] achieves robustness and efficiency in representation
learning by capitalizing on three key advantages. Firstly, the incorporation of various
augmentations empowers the network to exhibit resilience against diverse perturbations
on low-level input features. Secondly, the consistency target aids the model in extracting
high-level semantic features directly from the point cloud data itself. Lastly, the self-
training process operates as an implicit mechanism that propagates sparse training
signals to unlabeled points, thereby facilitating the generation of dense pseudo-labels
and enhancing the stability of the learning process. Moreover, PointMatch [3]introduces
a gradual transition from supervoxel prior pseudo-labeling to point-wise pseudo-
labeling during the training phase, adaptively adjusting the weight assigned to each
technique as the model trains.

OTOC [2] introduces a self-training approach for weakly supervised 3D semantic
segmentation. The method incorporates a graph propagation module and a relation net-
work, working collaboratively to generate and propagate pseudo-labels in an iterative
manner. This enables the model to learn from minimal supervision while leveraging
low-level features such as color, coordinates, and 3D U-Net [24] features, along with
predictions from the relation network, to propagate labels. The process involves the
generation of supervoxels, efficient label propagation within the supervoxels, and the
construction of a graph propagation module where each supervoxel represents a node
in the graph. Updated pseudo-labels are generated using the low-level features and
relation network predictions if the predicted pseudo-label criteria exceeds a given
threshold.

Figure 3.3 provides an overview of the OTOC [2] model for weakly supervised 3D
semantic segmentation, illustrating the iterative pseudo-label generation and graph
propagation process.

In our proposed approach, similar to OTOC [2], we aim to perform weakly supervised
semantic segmentation on point clouds by leveraging the utilization of oversegmented
point clouds. However, our method diverges from OTOC [2] in that we exclusively
employ the segmentation network for the generation and updating of pseudo-labels.
We leverage the unlabeled data within the contrastive learning framework and integrate
complementary 2D information as an additional check to address the uncertainty in
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Figure 3.3: An overview of OTOC for weakly supervised 3D semantic segmentation.
The model employs a graph propagation module and a relation network to
iteratively generate and propagate pseudo-labels. Figure adapted from [2].

pseudo-labeling. Unlike OTOC [2], our approach simplifies the process by utilizing a
single network for pseudo-label generation, resulting in increased efficiency in terms of
the network parameters that need to be updated.

3.2 Contrastive Learning

Contrastive learning has shown great promise as a technique for unsupervised represen-
tation learning in the field of semantic segmentation. In this section, we explore several
approaches that harness the power of contrastive learning to extract discriminative
features and enhance the representation of point clouds specifically for the task of
semantic segmentation.

The Fully Convolutional Geometric Features (FCGF) [61], revolutionizes feature
extraction in point clouds by leveraging sparse tensors and sparse convolutions. Unlike
traditional methods that require cropping or downsizing the point cloud, FCGF [61]
enables direct feature extraction for each individual point. Additionally, FCGF [61]
introduces point-level correspondence-based contrastive learning losses, which offer
valuable insights for various downstream tasks that necessitate fine-grained analysis at
the point level. These contrastive learning losses enhance the discriminative power of
the learned features and facilitate their utilization in a wide range of applications.

PointContrast [62] extends the feature extraction capabilities of FCGF [61] by introduc-
ing the PointInfoNCE loss, which is specifically designed for point-level representations.
This loss function is a variant of the well-established InfoNCE [63] loss widely used
in contrastive learning. PointContrast [62] starts by generating two partial scans from
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different views, ensuring a minimum overlap of 30%. To facilitate alignment, these
partial scans are then transformed to the world frame. Positive pairs are constructed
by selecting the same point from different partial scans, generated from distinct over-
lapping views. By employing the PointInfoNCE loss, PointContrast [62] pretrains the
network by maximizing the agreement between positive pairs, thus promoting the
learning of discriminative point-level features.

Superpixel-driven Lidar Representations (SLidR) [64] employs a knowledge distil-
lation strategy to enhance feature similarity and consistency by leveraging both a
pretrained 2D network and an untrained 3D network. The method initially generates
superpixels using the SLIC [64] algorithm applied to the 2D images. Features are then
extracted from the 2D images using a pretrained 2D network, while the 3D point cloud
features are obtained using an untrained 3D network. Within each superpixel, feature
averaging is performed. Additionally, correspondences between points within the
superpixels and the point cloud are established. To align the features of the pretrained
2D network and the untrained 3D network, a superpixel-driven contrastive loss is
employed. This process effectively distills the informative 2D feature information into
the corresponding backprojected locations in the point cloud, facilitating enhanced
feature similarity and consistent predictions.

Figure 3.4: An overview of SLidR. The model employs a knowledge distillation strategy,
leveraging a pretrained 2D network and an untrained 3D network to enhance
feature similarity and consistency. Figure adapted from [64].

Figure 3.4 provides an overview of SLidR [64], illustrating the generation of superpix-
els, feature extraction, feature averaging, and the application of the superpixel-driven
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contrastive loss to align the features of the pretrained 2D network and the untrained
3D network.

Pri3D [65], has emerged as a seminal work that has greatly influenced our research
endeavors, particularly in the field of multi-view and point cloud consistency. Pri3D [65]
puts forth a compelling proposition by harnessing the intrinsic characteristics of point
clouds, characterized by their multi-view and multi-modality nature, to establish and
enforce feature similarity between points in 3D space and their corresponding 2D pixels.
To accomplish this objective, Pri3D [65] uses the PointInfoNCE [62] loss to promote
feature similarity within both pixel-pixel and pixel-point correspondences. Through the
integration of this innovative methodology, Pri3D [65] creates a consistent and stable
prediction framework across different views and modalities.

Figure 3.5 serves as a visually informative representation of the framework of
Pri3D [65], offering a comprehensive overview of the integrated approach that in-
corporates multi-view and multi-modality information to establish feature similarity
between points and their corresponding 2D pixels.

Figure 3.5: An overview of the Pri3D model. Pri3D leverages the multi-view and
multi-modality nature of point clouds to establish feature similarity between
points in 3D space and their corresponding 2D pixels. Figure adapted
from [65].

The profound impact of Pri3D [65] on our research trajectory is evident in our delib-
erate integration of 2D-2D and 2D-3D correspondences within our research pipeline.
Building upon the foundational insights provided by Pri3D [65], we recognize the
inherent value in leveraging these correspondences as an additional criterion for
pseudo-labeling, specifically by capitalizing on the agreement observed between the
2D-3D correspondences and their corresponding predictions. This novel integration
enables us to exploit the rich and valuable insights offered by the 2D predictions,
thereby complementing the conventional reliance on 3D prediction confidence. By
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effectively utilizing the wealth of information available within both the 2D and 3D
domains, our objective is to enhance the accuracy, robustness, and comprehensibility of
the semantic segmentation of point clouds.
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Our methodology aims to address the challenges of weakly supervised semantic
segmentation in point cloud data by integrating advanced techniques proposed in
contrastive learning and pseudo-labeling. Our main motivation is to leverage the
untapped potential of the 2D modality to enhance pseudo-labeling and improve the
overall semantic segmentation performance.

In many prior works, the 2D modality is often overlooked, focusing solely on the 3D
information for labeling and segmentation. However, we believe that incorporating
the 2D counterpart can provide valuable insights and enhance the pseudo-labeling
process. By analyzing and leveraging the complementary nature of the 2D and 3D
modalities, we aim to improve the accuracy and robustness of weakly supervised
semantic segmentation. An overview of our proposed model is illustrated in Figure 4.1.

To achieve our goals, we have designed a comprehensive methodology that encom-
passes various stages. The preprocessing stage plays a vital role in preparing the data
by performing supervoxel oversegmentation, generating superpixels, and establishing
2D labels from the 3D point clouds. This enables us to capture both the spatial and
visual context of the scenes.

To address the issue of sparse signal resulting from limited labeled data, we employ
oversegmentation techniques to increase the signal count. By segmenting the point
cloud into supervoxels and generating superpixels in the image plane, we propagate
the sparse labels into the oversegmented regions, effectively increasing the supervision.
The supervoxels and superpixels serve as key components in contrastive learning and
pseudo-labeling stages.

To extract meaningful and discriminative features, we utilize a modified version
of BPNet [56], enhancing it with additional convolutional layers to capture intricate
patterns in both the 2D images and 3D point clouds. By extracting features from both
modalities, we aim to leverage the unique information present in each modality and
leveraging these features for contrastive learning and pseudo-labeling.

In the contrastive learning stage, we employ two different techniques. The first
technique is inspired by Pri3D [65] and SLidR [64], utilizing unsupervised geometric
loss to encourage similarity between superpixels and supervoxels. By extending this
concept to the superpixel-supervoxel level, we aim to leverage the rich information
provided by the 2D modality to enhance contrastive learning.
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Figure 4.1: A general overview of our proposed model.

24



4 Methodology

The second technique involves supervised contrastive loss, where we leverage known
labels to encourage clustering of supervoxels with similar semantic information. By
incorporating sparse labels and creating positive pairs based on known labels, we
aim to improve the clustering of supervoxels, leading to more accurate and coherent
segmentation results.

The final step in our methodology is pseudo-labeling, where we propagate labels
based on prediction confidence and class prototypes. Here, we highlight the significance
of integrating the 2D modality into the pseudo-labeling process. By leveraging the 2D
information, we aim to enhance the accuracy of pseudo-labeling, resulting in improved
semantic segmentation scores.

Throughout our methodology, we emphasize the importance of utilizing the 2D
modality in conjunction with supervoxels to enhance pseudo-labeling and increase the
overall performance of weakly supervised semantic segmentation in point clouds.

4.1 Preprocessing

In this section, we outline the preprocessing steps applied in our methodology.

4.1.1 Point Cloud Oversegmentation

To address the issue of sparse labels and improve the information utilization within the
oversegmented regions, we employ oversegmentation techniques inspired by OTOC [2].
By leveraging oversegmentation, we enhance the signal derived from sparse labels
and facilitate more efficient semantic segmentation and contrastive learning processes.
Specifically, we assign labels directly to oversegmented supervoxels, rather than indi-
vidual points.

To segment the point cloud into meaningful regions, we employ VCCS [12]. VCCS [12]
utilizes voxelization and connectivity analysis to identify distinct regions within the
point cloud, resulting in the generation of supervoxels. This process enables the
partitioning of the point cloud into coherent and semantically meaningful regions.

4.1.2 Sparse Label Assignment within Supervoxels

To facilitate weakly supervised semantic segmentation, we assign sparse labels to the
supervoxels based on the available annotated data. The sparse labels, representing
specific object classes or semantic categories, are assigned to the supervoxels that
contain corresponding points within their boundaries.

25



4 Methodology

4.1.3 Superpixel Generation via Backprojection

Once the point cloud is oversegmented into supervoxels, we proceed to generate
superpixels by backprojecting the supervoxels onto their corresponding 2D image
counterparts. This involves projecting the 3D supervoxels onto their corresponding
locations in the 2D image space. By aligning the supervoxels with their 2D represen-
tations, we create dense superpixel mappings. These mappings provide a contextual
understanding of the underlying 3D structure, as can be seen in Figure 4.2.

Figure 4.2: Illustration of backprojecting 3D supervoxels onto the 2D image plane,
generating superpixels that represent the context of the underlying 3D
structure.

4.1.4 2D Image Label Generation via Backprojection

To establish a correspondence between the 2D images and the 3D point cloud data, we
perform a backprojection process to generate 2D labels from the available 3D point
cloud annotations. This involves projecting the sparse labels onto the corresponding
camera poses using intrinsic and extrinsic matrices, resulting in 2D labels that align
with the spatial locations of the objects or semantic categories within the point cloud.
During the label assignment process, we incorporate occlusion masking by applying
a 5 cm threshold, which ensures that the labels are accurately assigned, taking into
account potential occlusions and improving the precision of the labeling process. It is
important to note that the quality of these generated 2D labels may be lower compared
to the original annotations, as the backprojection process does not account for certain
filters and noise correction techniques applied in the original 2D labeling process.
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4.2 Feature Extraction

In our methodology, we leverage the modified architecture of BPNet [56] to extract
D-dimensional feature vectors from both the 2D images and point clouds using an
added convolutional feature extraction head. By employing BPNet [56] with this
modified feature extraction layer, we effectively harness the strengths of both modalities,
capturing rich information from the 2D images and point clouds.

For supervoxels, which represent clusters of points in the 3D space, we compute the
average feature vector by taking the mean of the feature vectors of all points within the
supervoxel. This process captures the collective information of the points within each
supervoxel, allowing us to represent the supervoxel with a single feature vector that
encodes both local details and global contextual information. The computation of the
average feature vector for a supervoxel can be represented as:

Fsupervoxel =
1

Npoints

Npoints

∑
j=1

Fj
3D (4.1)

where Npoints is the total number of points in the supervoxel and Fj
3D represents the

feature vector of the j-th point.
Similarly, for superpixels, which represent coherent regions in the 2D image space,

we compute the average feature vector by taking the mean of the feature vectors of
all pixels within the superpixel. This averaging operation allows us to summarize the
information within each superpixel, capturing the overall characteristics and context
of the region. The computation of the average feature vector for a superpixel can be
represented as:

Fsuperpixel =
1

Npixels

Npixels

∑
i=1

Fi
2D (4.2)

where Npixels represents the total number of pixels in the superpixel and Fi
2D denotes

the feature vector of the i-th pixel.
The resulting average pooled features from supervoxels and superpixels contain rich

contextual information, capturing the collective characteristics of the points within each
supervoxel and the pixels within each superpixel. These average feature vectors serve
as more compact and representative descriptors of the supervoxels and superpixels.
They preserve the essential information from the original feature vectors while reducing
their dimensionality and computational complexity.

These average pooled features provide a holistic understanding of the scene, encap-
sulating both local and global cues, which is crucial for effective semantic segmentation.
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Leveraging these features, we can better capture the relationships and contextual
dependencies within the scene.

In our methodology, we utilize the average pooled features for two main purposes:
contrastive learning and constructing class prototypes for pseudo-labeling. The average
pooled features serve as the input for our contrastive learning techniques, allowing us to
learn meaningful representations that capture the similarities and differences between
supervoxels and superpixels. Additionally, these features are utilized to construct class
prototypes, which are essential for the pseudo-labeling process.

4.3 Contrastive Learning

In our methodology, we integrate contrastive learning to address the limitations of
sparse labels and enhance the quality of learned representations. Our contrastive
learning pipeline enables the model to capture fine-grained differences and similarities
among samples by leveraging both labeled and unlabeled data. We employ two distinct
contrastive learning techniques: Unsupervised geometric contrastive learning and
sparse label-aware supervised contrastive learning.

4.3.1 Unsupervised Geometric Contrastive Learning

In our approach, we leverage the established correspondence between superpixels and
supervoxels to incorporate an unsupervised contrastive learning technique. Our goal
is to enhance the similarity between the average pooled features of superpixels and
supervoxels. This process is illustrated in Figure 4.3.

We utilized the PointInfoNCE [62] loss to measure the contrastive learning objective:

Lgeo = − ∑
(i,j)∈P

log
exp(sim(zi, zj)/τ)

∑k∈Ni,j
exp(sim(zi, zk)/τ)

(4.3)

In this equation, (i, j) represents a positive pair of superpixel-supervoxel correspon-
dences, where zi and zj denote the average pooled features of the superpixel and
supervoxel, respectively. The term P represents the set of all positive pairs, and Ni,j
denotes the set of negative pairs for the positive pair (i, j). The temperature parameter
τ controls the sharpness of the contrastive loss function, with higher values focusing
more on relative similarities and lower values emphasizing distinctions between similar
and dissimilar pairs.

The similarity function sim(zi, zj) computes the cosine similarity between the feature
representations of zi and zj. It is defined as:
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Figure 4.3: Illustration of the unsupervised geometric contrastive learning process. The
process aims to increase the similarity between the average pooled features
of corresponding superpixels and supervoxels in the latent space.
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sim(zi, zj) =
zi · zj

|zi| · |zj|
(4.4)

where zi and zj represent the feature vectors of the superpixel and supervoxel, respec-
tively. The cosine similarity normalizes the similarity scores, making the contrastive
loss invariant to the scale of the representations.

By using the unsupervised geometric contrastive learning we aim to bring the average
pooled features of corresponding superpixels and supervoxels closer together in the
latent space, encouraging the model to learn meaningful representations that capture
the underlying similarities between them. This unsupervised geometric contrastive
learning enables our model to discover and leverage the intrinsic geometric properties
of the scene.

4.3.2 Sparse Label-Aware Supervised Contrastive Learning

In our methodology, we address the challenge of sparse labels by incorporating a
supervised contrastive learning technique. The sparsity of labeled samples poses
difficulties in training accurate and generalizable models. To overcome this limitation,
we leverage the available sparse labels and enhance the discriminative power of the
learned representations. An illustration of this process is shown in Figure 4.4.

By integrating supervised contrastive learning into our framework, we aim to en-
courage the clustering of supervoxels belonging to the same class while pushing apart
supervoxels from different classes in the latent space.

For this purpose, we utilize the Supervised Contrastive Loss (SupCon) [19], which
can be expressed as:

Lsup = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(sim(zi, zp)/τ)

∑k∈N(i) exp(sim(zi, zk)/τ)
(4.5)

In this equation, i represents an anchor supervoxel where I represents the set of all
supervoxels, p denotes a positive supervoxel within the same class as the anchor, P(i)
represents the set of all supervoxels belonging to the same class as the anchor i, and
N(i) represents the set of all supervoxels from different classes than the anchor i. The
index set I contains all anchor supervoxels.

The temperature parameter τ controls the sharpness of the contrastive loss function,
similar to Equation 4.3. However, unlike the unsupervised case, we have a normalization
factor −1

|P(i)| in Equation 4.5.

The inclusion of the normalization factor −1
|P(i)| in Equation 4.5 is essential in super-

vised contrastive learning as it balances the loss contributions across anchor supervoxels.
By dividing the loss by the number of positive supervoxels associated with each anchor,
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Figure 4.4: Illustration of the sparse label-aware supervised contrastive learning process.
The process aims to encourage the clustering of supervoxels belonging to
the same class while pushing apart supervoxels from different classes in the
latent space.
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it ensures that the learning process is fair and not biased towards anchors with a larger
number of positive pairs. In section 4.3.1 where we have an unsupervised setting
and labeled positive pairs are absent, this normalization factor is not necessary. The
incorporation of the normalization factor in Equation 4.5 enables the model to learn
discriminative representations effectively by appropriately scaling the loss contributions
based on the availability of labeled positive pairs.

The aim of applying supervised contrastive learning is to tune the latent space to
better serve our specific requirements. However, we observed that applying supervised
contrastive learning to the supervoxels alone is sufficient to construct a meaningful
latent space. This is because our unsupervised geometric contrastive learning, which
establishes connections between superpixels and supervoxels, indirectly maximizes the
similarity between superpixels connected to the same supervoxel. Additionally, consid-
ering that generated superpixels can be noisy, we applied the supervised contrastive
loss on the supervoxels only. The justification for this choice will be discussed further
in the ablation study section 5.5.1.

The supervised contrastive loss facilitates the learning process by encouraging the
model to project supervoxels belonging to the same class closer together in the latent
space while pushing supervoxels from different classes apart. This helps in distinguish-
ing unlabeled supervoxels that fall closer to a cluster of supervoxels belonging to a
specific class. Incorporating the sparse labels into the supervised contrastive learning
process enables our model to leverage the limited labeled samples more effectively,
enhancing the quality and discriminative power of the learned representations.

By combining unsupervised geometric contrastive learning and sparse label-aware
supervised contrastive learning provides a powerful framework for learning rich and
discriminative representations from both labeled and unlabeled data. This combination
enabled our model to capture both the intrinsic geometric properties of the scene and
the semantic information encoded in the sparse labels.

4.4 Pseudo-labeling Techniques

In this section, we introduce our pseudo-labeling techniques, which play a crucial role in
leveraging limited labeled samples and enhancing the performance of our segmentation
model. Pseudo-labeling allows us to assign labels to unlabeled supervoxels based
on certain criteria, expanding the available labeled samples and providing additional
supervision during the training process.

Our pseudo-labeling techniques encompass the integration of both 2D and 3D infor-
mation, thereby leveraging the complementary strengths offered by these modalities.
We introduce innovative strategies that incorporate the 2D modality as an additional

32



4 Methodology

verification step within the pseudo-labeling process. This integration contributes to the
refinement and accuracy of our pseudo-labeling techniques, elevating their effectiveness
in generating reliable labels for the unlabeled supervoxels.

The subsequent sections explore different pseudo-labeling techniques: Pseudo-
labeling Leveraging Prediction Probabilities, Pseudo-labeling Leveraging Class Proto-
types, and Removal of Incorrect Pseudo-Labels.

4.4.1 Pseudo-labeling Leveraging Prediction Probabilities

This section delineates a methodical pseudo-labeling strategy that incorporates predic-
tion probability thresholds. It involves assigning pseudo-labels to previously unlabeled
supervoxels, drawing from the prediction probability scores derived from average-
pooled predictions.

Utilizing Average-Pooled Predictions: The process begins by obtaining average-
pooled supervoxel predictions from the point cloud. We denote the prediction scores
for a given supervoxel as F.

Acquiring Probability Scores with Softmax: The softmax function is applied to the
prediction scores F, thus creating a class-based probability distribution. The resulting
probability scores, P = [p1, p2, . . . , pC], illustrate the likelihood of the supervoxel
belonging to class c, where C symbolizes the total class count.

Threshold-based Classification: The pseudo-label for a supervoxel is identified by
comparing the highest likelihood probability with a predefined threshold T. If pmax > T,
where pmax is the highest probability, the supervoxel receives the corresponding class
label.

Superpixel Validation: An innovative addition to this pseudo-labeling approach
is the inclusion of 2D modality for validation. For each supervoxel, we consider
corresponding 2D superpixel prediction scores Q1, Q2, . . . , QN , where N represents
the total superpixel count. Each superpixel prediction score Qi is compared with the
predefined threshold T after applying softmax function. If any of the superpixels satisfy
both conditions: (1) the predicted class matches that of the supervoxel, and (2) the
associated probability score exceeds threshold T, the pseudo-label decision is validated.

The pseudo-labeling algorithm, as shown in Algorithm 2, outlines the steps involved
in the prediction probability-based pseudo-labeling technique with a 2D sanity check.
For each supervoxel, the algorithm extracts the prediction scores and computes the
probability scores. The class with the highest probability is identified, and if the
probability exceeds the threshold, the algorithm proceeds to validate the pseudo-label
decision using corresponding 2D superpixel prediction probabilities. If any superpixel
satisfies the conditions of matching predicted class and probability exceeding the
threshold, the supervoxel is assigned the class label.

33



4 Methodology

Algorithm 2 Pseudo-labeling Leveraging Prediction Probabilities with 2D Sanity Check

Require: Supervoxels SV , 2D Superpixels SP , Threshold T
Ensure: Pseudo-labeled supervoxels

1: for each supervoxel sv in SV do
2: Extract the prediction scores F for sv
3: Compute the probability scores p = softmax(F)
4: Identify the class c = argmax(p) with the highest probability
5: if pc > T then
6: for each corresponding 2D superpixel sp in SP [sv] do
7: Compute the prediction scores Q for sp
8: Calculate the probability scores q = softmax(Q)

9: Determine the class c′ = argmax(q) with the highest probability
10: if qc′ > T and c′ = c then
11: Assign class c to sv
12: Break
13: end if
14: end for
15: end if
16: end for

The proposed pseudo-labeling approach leveraging prediction probabilities offers a
reliable and systematic process for assigning labels to previously unlabeled supervoxels,
leveraging prediction probabilities. By integrating the 2D modality for verification,
we reinforce the robustness of the labeling process, thus significantly enhancing the
accuracy of our pseudo-labeling.

4.4.2 Pseudo-labeling Leveraging Class Prototypes

In this section, we present our systematic pseudo-labeling strategy, which utilizes class
prototypes stored in a memory bank. Our approach incorporates two distinct metrics,
similarity and distance, to determine the threshold for assigning pseudo-labels.

Utilizing Average Pooled Features: Our procedure commences by collecting average
pooled features from the prior stage, producing a feature vector of shape (D,) for every
supervoxel. The feature vector for a particular supervoxel is designated as F.

Constructing a Memory Bank: We formulate a memory bank as a CxD dimensional
vector, where C signifies the class count and D corresponds to feature dimensionality.
This memory bank, initially populated with random vertical vectors, serves as a store
of class prototypes.
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Updating the Memory Bank: As the training ensues, we modify the memory bank
using a momentum update strategy. The momentum update equation for the memory
bank can be represented as:

Kc̄ ← mKc̄ + (1−m)Fj (4.6)

Here, Kc̄ represents the memory vector for class c̄, Fj stands for the feature vector
of sample j in the mini-batch, and m is the momentum coefficient. This momentum
update allows the memory bank to accumulate features over time, thus serving as class
prototypes.

Similarity-based Pseudo-labeling: We compute the cosine similarity between the
feature vector F of every supervoxel and the class prototypes preserved in the memory
bank. The supervoxel receives the class label associated with the class prototype
exhibiting the maximum similarity.

Similarity(F, Kc̄) =
F ·Kc̄
|F||Kc̄|

(4.7)

Distance-based Pseudo-labeling: We determine the Euclidean distance between the
feature vector F of each supervoxel and the class prototypes within the memory bank.
The supervoxel is assigned the class label linked to the class prototype demonstrating
the minimum distance.

Distance(F, Kc̄) = |F−Kc̄|2 (4.8)

Class-Specific Threshold Calculation: As part of our pseudo-labeling technique, we
introduce a more nuanced approach to making labeling decisions by incorporating
class-specific statistics. This approach factors in both the mean and the standard
deviation of the distances or similarities for each class, which are calculated as we
update the memory bank. This class-specific thresholding, as opposed to employing a
single threshold value for all classes, renders a more flexible pseudo-labeling process,
finely tuned to the distinct statistical attributes of each class, thereby increasing the
robustness of our methodology. In the context of similarity-based pseudo-labeling, the
threshold is determined as µc̄ − α · σc̄. Conversely, for distance-based pseudo-labeling,
the threshold is formulated as µc̄ + α · σc̄. In both instances, µc̄ and σc̄ represent the mean
and standard deviation of class c̄ for the respective strategy, and α is a hyperparameter.

Superpixel Validation: An innovative addition to our pseudo-labeling approach is
the integration of the 2D modality for validation. For each supervoxel, we consider
the corresponding 2D superpixel features Q1, Q2, . . . , QN , where N represents the total
count of superpixels. Instead of utilizing prediction probabilities as in section 4.4.1,
we now compare each superpixel feature Qi with the class prototypes stored in the
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Algorithm 3 Pseudo-Labeling Leveraging Class Prototypes with 2D Sanity Check

Require: Supervoxels SV , 2D Superpixels SP , Memory Bank K, Threshold T
Ensure: Pseudo-labeled supervoxels

1: Set OPERATOR ▷ Use > for similarity, < for distance
2: Set SELECT ▷ Use argmax for similarity, argmin for distance
3: Set FUNC ▷ Use Eq.4.7 for similarity, Eq.4.8 for distance
4: for each supervoxel sv in SV do
5: Calculate the average pooled feature F for sv
6: Compute the scores S = FUNC(F, Kc̄)

7: Identify the class c = SELECT(S)
8: if Sc OPERATOR T then
9: for each corresponding 2D superpixel sp in SP [sv] do

10: Compute the average pooled feature Q for sp
11: Compute the scores S2D = FUNC(Q, Kc̄)

12: Determine the class c′ = SELECT(S2D)

13: if Sc′ OPERATOR T and c′ = c then
14: Assign class c to sv
15: Break
16: end if
17: end for
18: end if
19: end for
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memory bank. We employ either the similarity equation 4.7 or the distance equation
4.8, along with the class-specific thresholds, to validate the pseudo-label decision.
The validation process requires two conditions to be satisfied: (1) the predicted class
matches that of the supervoxel, and (2) the computed superpixel threshold is smaller
than the class-specific threshold.

The pseudo-labeling algorithm presented in Algorithm 3 outlines the steps involved
in our pseudo-labeling technique that leverages class prototypes, incorporating the 2D
sanity check. For each supervoxel, the algorithm calculates the average pooled feature
F and computes the scores using the selected metric (similarity or distance). The class
with the highest score is identified, and if the score exceeds the threshold, the algorithm
proceeds to validate the pseudo-label decision using the corresponding 2D superpixel
features. If any superpixel satisfies the conditions of matching the predicted class and
having a superpixel threshold smaller than the class-specific threshold, the supervoxel
is assigned the corresponding class label.

The class prototype-based pseudo-labeling technique provides two distinct strategies,
namely similarity-based and distance-based, for assigning pseudo-labels to unlabeled
supervoxels. By utilizing the class prototypes stored in the memory bank, our approach
capitalizes on the geometric proximity of feature vectors to prototypes, assigning
pseudo-labels based on maximum similarity or minimum distance. The integration of
the 2D modality for validation further enhances the reliability of the pseudo-labeling
process.

4.4.3 Removal of Incorrect Pseudo-Labels

To maintain the integrity of the pseudo-labeling process and ensure the consistency
between the assigned pseudo-labels and the evolving model predictions, it is necessary
to periodically re-evaluate and potentially remove incorrect pseudo-labels. This step
helps in filtering out the supervoxels that no longer meet the initial criteria for pseudo-
labeling, such as prediction confidence, similarity, or distance.

The removal of incorrect pseudo-labels presented in Algorithm 4 is performed
during the later iterations of the training process. After assigning pseudo-labels to the
supervoxels based on the initial criteria, the model continues to learn and update its
predictions. As the model evolves, there is a possibility that some initially pseudo-
labeled supervoxels may no longer satisfy the criteria that were used for their labeling.
These supervoxels may become misclassified or exhibit inconsistencies with the updated
model predictions.

To address this issue, we incorporate a validation step in which we reassess the
pseudo-labeled supervoxels based on the current model predictions. If a pseudo-
labeled supervoxel fails to meet the criteria, it is considered an incorrect pseudo-label
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and is subsequently removed. The specific criteria for removal may vary depending on
the initial pseudo-labeling method used.

Algorithm 4 Removal of Incorrect Pseudo-labels

Require: Pseudo-labeled Supervoxels SV , Model Predictions P
Ensure: Filtered Pseudo-labeled Supervoxels

1: for each pseudo-labeled supervoxel sv in SV do
2: Retrieve the initial criteria used for pseudo-labeling CRITERIA
3: Retrieve the current model prediction for sv
4: if CRITERIA(sv) no longer satisfies the criteria then
5: Remove the pseudo-label from sv
6: end if
7: end for

The removal of incorrect pseudo-labels ensures that the pseudo-labeled data remains
consistent with the evolving model predictions. By periodically re-evaluating and
removing incorrect pseudo-labels, we ensure the reliability of the pseudo-labeled data.
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In this chapter, we outline the datasets and evaluation metrics that we used for evaluat-
ing our method. We present both quantitative and qualitative results to validate the
effectiveness of our approach. Furthermore, we carry out ablation studies to analyze
the specific contribution of each individual component of our method towards the final
results.

5.1 Training Details

In our training process, we employed various strategies to optimize the performance
of our proposed approach. The final loss function consisted of different components,
including geometric contrastive loss (Lcontgeo), supervised contrastive loss (Lcontsup),
2D supervised loss (Lsup2D

), and 3D supervised loss (Lsup3D
). We employed the cross

entropy loss for the sparse labels and the dice loss [66] for the pseudo-labels in both the
2D and 3D supervised losses. The overall loss was computed as a linear combination
of these components with specific weights:

L = λcontgeo Lcontgeo + λcontsup Lcontsup + λsup2D
Lsup2D

+ Lsup3D
(5.1)

We set the weights λcontgeo to 0.2, λcontsup to 0.1, and λsup2D
to 0.1 to balance the

contributions of each component in the overall loss. The feature size of supervoxels
and superpixels was set to 64, providing a suitable dimensionality for effective con-
trastive learning and pseudo-labeling. In the contrastive learning process, we applied
supervised contrastive learning only to supervoxels in addition to the unsupervised
learning, setting the temperature parameter τ to 0.4. We also set the prediction confi-
dence threshold for pseudo-labeling at 0.95 and utilized a combined prediction and
distance-based approach for pseudo-labeling.

To implement our approach, we utilized the PyTorch [67] framework along with
PyTorch Lightning [68] and the Minkowski Engine [9] sparse tensor library. The training
process was conducted on two NVIDIA A40 GPUs. We employed the stochastic gradient
descent (SGD) [69] optimizer with a base learning rate of 0.01 and a mini-batch size of
16. A polynomial learning rate scheduler with a power of 0.9 was applied to adaptively
adjust the learning rate during training. Additionally, we set the momentum and
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weight decay parameters to 0.9 and 0.0001, respectively, to stabilize and regularize the
training process.

To facilitate faster training, we set the voxel size for the Minkowski Engine [9] to 5 cm,
balancing computational efficiency with the level of detail captured in the segmentation.
We also resized the 2D images to a smaller resolution of 240 x 320. The model was
trained on both the ScanNetv2 [4] and 2D-3D-S [5] dataset for 100 epochs. During
initialization, the 2D UNet part of the model was initialized using weights pretrained
on ImageNet [70], while the 3D part was initialized from scratch.

5.2 Dataset and Evaluation Metrics

5.2.1 Datasets

We utilized two widely used datasets for evaluating our proposed methods: ScanNetv2
[4] and 2D-3D-S [5].

ScanNetv2 [4]: ScanNetv2 [4] is a large-scale indoor scene dataset containing diverse
indoor environments such as offices, living rooms, and other indoor spaces. It consists
of over 2.5 million RGB-D frames across 1500 scans, providing rich visual and depth
information. The dataset is annotated with 3D camera poses, surface reconstructions,
and semantic segmentation labels. ScanNetv2 [4] is officially split into 1201 training
scans and 312 validation scans, each captured from different scenes. Additionally, there
is a hidden ground truth test set of 100 scans used for benchmarking purposes.

2D-3D-S [5]: 2D-3D-S [5] is a comprehensive dataset that serves as a superset of
the S3DIS [6] dataset. It includes the point cloud data from S3DIS [6] along with
additional modalities such as RGB and depth images, as well as camera poses and
surface normals. 2D-3D-S [5] extends the capabilities of S3DIS [6] by providing richer
sensory information for each scene. This dataset enables us to leverage both 2D and 3D
modalities in our experiments, enhancing the overall understanding of the scene.

5.2.2 Evaluation Metric

To quantitatively assess the accuracy and quality of our scene segmentation model, we
employed the Mean Intersection over Union (mIoU) metric. mIoU is a commonly used
evaluation metric in semantic segmentation tasks. It measures the average intersection
over union across all object classes in the dataset.

The mIoU is calculated by dividing the sum of the intersection areas between the
predicted segmentation masks and the corresponding ground truth masks by the sum
of the union areas:
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mIoU =
1
C

C

∑
i=1

TPi

TPi + FPi + FNi
(5.2)

where C is the total number of object classes, TPi is the true positive count for class i,
FPi is the false positive count for class i, and FNi is the false negative count for class i.
By using mIoU as our evaluation metric, we can assess the model’s ability to accurately
segment different object classes in the scene where a higher mIoU score indicates a
better segmentation performance.

To quantitatively assess the performance of our pseudo-labeling approach, in addition
to mIoU, we also employed precision and recall as evaluation metrics. Precision
measures the proportion of correctly labeled positive samples out of the total predicted
positive samples, while recall measures the proportion of correctly labeled positive
samples out of the total ground truth positive samples.

Precision is calculated as:

Precision =
TP

TP + FP
(5.3)

Recall is calculated as:

Recall =
TP

TP + FN
(5.4)

where TP represents true positives, FP represents false positives, and FN represents
false negatives.

Precision provides insights into the accuracy of the pseudo-labeled samples, indi-
cating how many of the positively labeled samples are actually correct. Recall, on the
other hand, provides insights into the completeness of the pseudo-labeling approach,
indicating how many of the actual positive samples are correctly identified.

By using precision and recall as additional evaluation metrics, we can assess the
effectiveness of our pseudo-labeling method in correctly identifying and labeling the
unlabeled samples. These metrics provide a more comprehensive understanding of
the performance of our approach and help to evaluate its robustness and reliability in
capturing the true positive samples.

5.3 Quantitative Results

On ScanNetv2 [4] we evaluate the performance of our method in four different weakly
supervised settings. These settings include scenarios where we used 20 points annotated
per scene, as well as 0.01%, 0.02%, and 0.1% of points annotated per scene. The 20
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points annotated per scene setting is selected from the official ScanNetv2 [4] data
efficient benchmark, while the other settings randomly sample points from each scene.
The results of our method on the validation set are presented in Table 5.1, and we also
evaluated our method using the official benchmark, as shown in Table 5.2. Notably,
our method outperformed SQN [1] in the 0.1% of points per scene setting. While our
method achieved competitive results in other settings, we were unable to achieve SOTA
performance compared to current weakly supervised methods in those scenarios.

It is important to highlight that SQN [1] reports that PointMatch [3] and OTOC [2]
utilize the provided ScanNetv2 [4] segments as supervoxels, assuming that these super-
voxels respect object boundaries. However, it is worth noting that this approach may
not be applicable to all datasets. For example, 2D-3D-S [5] does not provide segments
that can be used as supervoxels. In contrast, our method employs oversegmentation
using VCCS [12] to generate supervoxels, which introduces some noise into the process.

For 2D-3D-S [5] we also evaluate the performance in three different scenarios, where
0.01%, 0.02%, and 0.1% of points were annotated per scene. We follow the official
train/validation split to train our method on Area 1,2,3,4,6 and report our performance
on Area 5. The results of our method on the validation set are presented in Table 5.3.
In contrast to our results on the ScanNetv2 [4], our method demonstrated superior
performance compared to other SOTA weakly supervised methods in the 0.02% and
0.1% settings.

Method Supervision mIoU (%)

MinkowskiNet [9] 100% 72.2
BPNet [56] 100% 73.9

OTOC [2] 20 points 61.4
OTOC [2] 0.02% 70.4
SQN [1] 0.1% 53.5
Pointmatch [3] 20 points 64.8
PointMatch [3] 0.01% 58.7
Pointmatch [3] 0.1% 69.3

Ours 20 points 58.4
Ours 0.01% 54.4
Ours 0.02% 61.1
Ours 0.1% 67.0

Table 5.1: mIoU (%) on different supervision settings on ScanNetv2 validation set.
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Method Supervision mIoU (%)

PointNet++ [41] 100% 33.9
SPLATNet [71] 100% 39.3
TangentConv [72] 100% 43.8
PointCNN [73] 100% 45.8
FPConv [74] 100% 63.9
RandLA-Net [45] 100% 64.5
PointConv [47] 100% 66.6
KPConv [48] 100% 68.4
MinkowskiNet [9] 100% 73.6
Virtual MVFusion [55] 100% 74.6
BPNet [56] 100% 74.9
Occuseg [58] 100% 76.4
Mix3D [60] 100% 78.1

OTOC [2] 20 points 59.4
OTOC [2] 0.02% 69.1
SQN [1] 0.01% 35.9
SQN [1] 0.1% 56.9
PointMatch [3] 20 points 62.4
PointMatch [3] 0.01% 57.1
Pointmatch [3] 0.1% 68.8

Ours 20 points 54.9
Ours 0.01% 50.1
Ours 0.02% 58.9
Ours 0.1% 66.1

Table 5.2: mIoU (%) on different supervision settings on ScanNetv2 hidden test set.
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Method Supervision mIoU (%)

PointNet [40] 100% 41.1
SegCloud [75] 100% 48.9
TangentConv [72] 100% 52.8
PointCNN [73] 100% 57.3
SPGraph [76] 100% 58.0
MinkowskiNet [9] 100% 65.4
Virtual MVFusion [55] 100% 65.4
KPConv [48] 100% 67.1
PointTransformer [77] 100% 70.4

OTOC [2] 0.02% 50.1
SQN [1] 0.01% 45.3
SQN [1] 0.1% 61.4
PointMatch [3] 0.01% 59.9
PointMatch [3] 0.1% 63.4

Ours 0.01% 57.2
Ours 0.02% 61.7
Ours 0.1% 63.8

Table 5.3: mIoU (%) on different supervision settings on 2D-3D-S Area-5.
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5.4 Qualitative Results

In addition to our quantitative results, we provide qualitative segmentation results to
demonstrate the effectiveness of our method. Figure 5.1 showcases the segmentation
results on the ScanNetv2 dataset [4], while Figure 5.2 presents the results on the 2D-3D-S
dataset [5]. Each figure includes the following visualizations: (a) the colored input point
cloud, (b) the ground truth (GT) semantic segmentation, (c) the semantic predictions
of our baseline [56] model trained with 100% of labels, and (d) the predictions of our
method trained with 0.1% of labels.

(a) Input point cloud (b) Ground truth (c) Baseline [56] (100%) (d) Ours (0.1%)

Figure 5.1: Qualitative segmentation results on the ScanNetv2 dataset. (a) Colored
input point cloud. (b) Ground truth semantic segmentation. (c) Semantic
predictions of our baseline model trained with 100% of labels. (d) Semantic
predictions of our method trained with 0.1% of labels.
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(a) Input point cloud (b) Ground truth (c) Baseline [56] (100%) (d) Ours (0.1%)

Figure 5.2: Qualitative segmentation results on the 2D-3D-S dataset. (a) Colored input
point cloud. (b) Ground truth semantic segmentation. (c) Semantic pre-
dictions of our baseline model trained with 100% of labels. (d) Semantic
predictions of our method trained with 0.1% of labels.
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5.5 Ablation Study

In this section, we conduct an ablation study to evaluate the effectiveness of various
components and techniques used in our approach. We aim to understand the impact
of each component on the segmentation performance and gain insights into their
contributions. The ablation study allows us to analyze the influence of individual
design choices and methodologies, providing a deeper understanding of the key factors
driving the results. The ablation studies are conducted under the 20 annotated labels
per scene setting.

To facilitate clarity and consistency, we use specific names to refer to key components:
Geometric contrastive loss (from Section 4.3.1), supervised contrastive loss (from Section
4.3.2), prediction-based pseudo-labeling (from Section 4.4.1), similarity-based pseudo-
labeling (from Section 4.4.2 with a similarity-based approach), and distance-based
pseudo-labeling (from Section 4.4.2 with a distance-based approach).

5.5.1 Importance of Contrastive Learning

The table 5.4 presents the results of our ablation study, which investigates the impact of
contrastive learning in the scene segmentation model. By analyzing the results, we can
gain insights into the effectiveness of different contrastive learning components.

Method mIoU (%)

Baseline BPNet [56] 55.92

+ Geometric contrastive loss 56.75
+ 3D Supervised contrastive loss 57.39
+ 2D Supervised contrastive loss 56.03

Table 5.4: Effect of different supervised/self-supervised contrastive losses on mIoU (%).
Each line starting with "+" represents the incremental addition of the specific
loss to the previous row, building upon the previous model configuration.

One of the key observations is that the inclusion of the geometric contrastive loss
significantly improves the performance of semantic segmentation. This loss enables the
model to capture geometric relationships and spatial information, resulting in more
accurate segmentations. This finding supports the importance of leveraging geometric
cues in scene understanding tasks.

Furthermore, when incorporating the supervised contrastive loss with the 3D modal-
ities, we observe a notable enhancement in the segmentation results. This demonstrates
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that leveraging the discriminative features learned from 3D supervoxels leads to im-
proved semantic segmentation. The supervised contrastive loss encourages the model
to differentiate between supervoxels belonging to different classes while promoting
similarity among those belonging to the same class.

However, the addition of the supervised contrastive loss with the 2D modality does
not show a substantial improvement in the segmentation performance. This can be
attributed to the fact that the geometric loss, combined with the supervised contrastive
loss in the 3D space, already effectively contrasts the superpixels belonging to the same
supervoxel, thus capturing the intra-class similarity. As a result, the inclusion of the
supervised contrastive loss with the 2D modality does not yield significant additional
benefits.

These findings highlight the importance of incorporating contrastive learning tech-
niques, such as geometric and supervised contrastive losses, in improving the scene
segmentation model. Leveraging geometric cues and exploiting discriminative features
learned from the 3D modalities can significantly enhance the model’s segmentation
performance, while the additional use of the 2D modality may not offer substantial
improvements due to redundancy in the learned representations.

5.5.2 Temperature in contrastive learning

In this subsection, we investigate the impact of temperature on the performance of
contrastive learning. The temperature parameter is a crucial component in contrastive
learning algorithms, as it controls the concentration of the probability distribution over
negative samples during the contrastive loss computation.

The results of our ablation study, presented in Table 5.5, shows the performance of
the model with different temperature values..

Temperature mIoU (%)

0.07 54.64
0.1 56.03
0.2 55.22
0.4 57.04
0.6 56.76

Table 5.5: Effect of different temperature values on segmentation performance, mea-
sured by mIoU (%).

Analyzing the results, we can observe that the choice of temperature has a noticeable
impact on the segmentation performance. Lower temperature values (0.07 and 0.1) lead
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to lower mIoU scores, indicating a less effective learning of discriminative features.
As the temperature increases to 0.2, we see a slight improvement in the mIoU score.
However, the best performance is achieved at a temperature of 0.4, where we observe
the highest mIoU of 57.04%. Further increasing the temperature to 0.6 leads to a slight
decrease in the mIoU score.

These results suggest that the selection of an appropriate temperature value is crucial
in contrastive learning. A higher temperature allows for a more diverse exploration
of negative samples, enabling the model to better differentiate between similar and
dissimilar instances. However, a high temperature value can lead to excessive diversity
and weaken the discriminative power of the learned representations.

Based on our ablation study, we select a temperature value of 0.4 for our contrastive
learning experiments, as it consistently yields the best segmentation performance.
This optimal temperature strikes a balance between effective contrastive learning and
discriminative feature extraction in the scene segmentation model.

5.5.3 Different pseudo-labeling approaches

We conduct a comprehensive analysis of different pseudo-labeling approaches and
their impact on the segmentation results. Table 5.6 presents the evaluation results
for prediction, similarity, and distance-based pseudo-labeling strategies. Notably, the
prediction approach achieves the highest 3D mIoU score, while the distance-based
approach demonstrates superior precision and recall.

Method Modality mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

Prediction 3D 59.08 65.28 74.26 1.959.697
Prediction 2D + 3D 58.71 70.44 72.60 1.376.372

Similarity 3D 57.14 52.73 73.14 1.959.736
Similarity 2D + 3D 56.96 45.95 71.69 1.622.384

Distance 3D 57.31 55.24 73.33 1.959.736
Distance 2D + 3D 57.28 85.45 91.41 17.847

Table 5.6: Comparison of different pseudo-labeling approaches and their impact on the
segmentation results in terms of mIoU (%). The prediction approach achieves
the highest 3D mIoU score, while the distance-based approach demonstrates
superior precision and recall.

When comparing the 3D and 2D + 3D approaches, we observe a decline in the
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total number of pseudo-labeled supervoxels upon incorporating the 2D modality. This
decline can be attributed to the alignment challenges between pseudo-labeling checks
and the corresponding superpixels. Consequently, fewer supervoxels meet the criteria
for confident pseudo-labeling. However, despite the inclusion of the 2D modality, we
do not observe a significant improvement in the 3D and 2D mIoU scores. This finding
prompts a deeper investigation into the underlying factors impeding the performance
enhancement.

Furthermore, the addition of the 2D modality does not consistently enhance precision
and recall across all pseudo-labeling approaches. In the prediction-based approach, the
recall exhibits a decrease when incorporating the 2D modality. Similarly, both precision
and recall decrease in the similarity-based approach. In contrast, the distance-based
approach demonstrates improved precision and recall with the inclusion of the 2D
check. Surprisingly, despite the gains in precision and recall, the mIoU decreases for the
distance-based approach. Moreover, the total number of pseudo-labeled supervoxels
experiences a substantial reduction, with only approximately 17000 supervoxels being
pseudo-labeled.

To elucidate the superior mIoU performance of the prediction-based approach com-
pared to other strategies, a more in-depth analysis is required. The prediction-based
approach likely harnesses the inherent semantic information present in the input data,
enabling effective discrimination between supervoxels belonging to different classes.
This capability to capture fine-grained class boundaries and semantic details contributes
to the higher mIoU scores achieved.

5.5.4 Combining Prediction and Distance-Based Pseudo-Labeling

We also investigated the impact of incorporating prediction confidence as an additional
check to the distance-based pseudo-labeling approach. By introducing prediction
confidence as a criterion for pseudo-labeling, we aim to improve the precision and
recall of the generated pseudo-labeled samples.

We observe that the prediction approach achieves the highest 3D mIoU score, indi-
cating its effectiveness in capturing fine-grained class boundaries and semantic details.
On the other hand, the distance-based approach demonstrates superior precision and
recall, emphasizing its ability to accurately identify supervoxels belonging to different
classes.

Motivated by the strengths exhibited by both approaches, we decide to combine the
prediction and distance-based methods to leverage their complementary advantages.
Table 5.7 presents the results obtained with distance-based approach and combined
approach. This combined approach capitalizes on the predictive power of the prediction
approach to capture detailed semantic information, while also benefiting from the
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precision and recall improvements provided by the distance-based approach.

Method mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

Distance 57.28 85.45 91.41 17.847
Combined 58.21 89.45 93.73 14.333

Table 5.7: Combining Prediction and Distance-Based Approaches. The combined ap-
proach shows improved mIoU (%), precision, and recall compared to the
distance-based approach alone.

The decision to incorporate prediction confidence as an additional check aims to
enhance the reliability and quality of the pseudo-labeling process. By considering the
confidence level of predictions, we filter out uncertain or noisy pseudo-labels, resulting
in more reliable and accurate segmentation results.

The experimental results support the effectiveness of the combined approach. By
combining the prediction and distance-based methods, we achieve a higher 3D mIoU
score compared to the distance-based approach alone. Furthermore, the precision and
recall metrics also show improvements, indicating a more precise and comprehensive
classification of supervoxels.

The successful integration of prediction confidence as an additional check high-
lights the potential of combining different approaches to enhance the segmentation
performance.

5.5.5 Different Thresholds for Combined Prediction and Distance-Based
Pseudo-Labeling

In this section, we explore the impact of employing different distance thresholds in the
combined distance and prediction-based pseudo-labeling approach in section 5.5.4.

As discussed in Section 4.4.2, distance-based pseudo-labeling involves class-specific
threshold calculations using the mean (µc̄) and standard deviation (σc̄) values for each
class. Distance-based pseudo-labeling uses µc̄ + α · σc̄ for class c̄, where assigning
smaller values to α denotes stricter thresholding.

By varying the threshold values, we aim to gain insights into their influence on
the segmentation performance and understand the trade-offs between accuracy and
completeness.

The results of our experiments, as shown in Table 5.8, reveal interesting observations
regarding the effect of different thresholds on the segmentation results. We find that
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stricter thresholds lead to improvements in precision and recall metrics, indicating a
higher degree of accuracy in differentiating supervoxels belonging to distinct classes.
However, it is noteworthy that as the threshold becomes stricter, there is a corresponding
decrease in the 3D mIoU score, which serves as a measure of overall segmentation
performance.

Threshold mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

α=-1 58.21 89.45 93.73 14.333
α=0 58.61 84.22 92.74 499.445
α=1 59.05 78.87 85.91 957.650
α=2 59.06 73.03 82.85 1.152.212

Table 5.8: Segmentation performance mIoU(%) with different thresholds for the com-
bined approach. The results show that stricter thresholds improve precision
and recall but lead to a decrease in 3D mIoU (%).

The decrease in 3D mIoU suggests that while stricter thresholds enhance the precision
and recall of pseudo-labeled samples, they may also result in the exclusion of super-
voxels that could contribute to a more comprehensive and holistic segmentation. This
trade-off between accuracy and completeness highlights the importance of selecting an
appropriate distance threshold that balances the objectives of precise class labeling and
capturing the full extent of the scene’s semantic information.

Furthermore, we observe that the total number of pseudo-labeled supervoxels de-
creases as the threshold becomes stricter. This reduction indicates a higher level of
selectivity in the pseudo-labeling process, with a more focused and refined set of
labeled supervoxels being retained.

The findings from our experiments emphasize the need for a thoughtful consideration
of the choice of distance threshold in the combined pseudo-labeling approach. It is
crucial to strike a balance between precision, recall, and 3D mIoU score, taking into
account the specific requirements and objectives of the segmentation task at hand.

5.5.6 Relaxation of 2D Pseudo-Labeling Criteria

We explored the impact of relaxing the criteria for 2D pseudo-labeling by disabling the
threshold checking in the 2D sanity part. Instead, the only requirement for pseudo-
labeling was having the same class assignment between the 2D and 3D modalities. The
objective was to incorporate a broader range of information and potentially increase
the coverage of pseudo-labeled samples.
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Table 5.9 presents the results of the relaxed distance-based pseudo-labeling ap-
proach compared to the non-relaxed approach. Surprisingly, the non-relaxed approach
achieved better performance, with a higher 3D mIoU, precision, and recall compared
to the relaxed approach. The non-relaxed approach yielded a 3D mIoU of 59.06, while
the relaxed approach achieved a slightly lower 3D mIoU of 58.85. This indicates that
the stricter criteria for 2D pseudo-labeling led to improved segmentation accuracy.

The results suggest that maintaining the threshold in the 2D sanity part, which
ensures a closer alignment between the 2D and 3D modalities, is beneficial for the
segmentation performance.

Method mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

Non-relaxed 59.06 73.03 82.85 1.152.212
Relaxed 58.85 65.98 81.97 1.563.619

Table 5.9: Impact of relaxing 2D pseudo-labeling criteria on segmentation performance,
measured by mIoU (%). The non-relaxed approach outperforms the relaxed
approach, indicating the importance of maintaining stricter criteria.

5.5.7 Relaxation of Threshold during Training

We explore the idea of using a dynamic threshold during the training process instead
of a fixed threshold for pseudo-labeling. The motivation behind this approach is to
leverage the benefits of a stricter threshold in the early stages of training, where precise
and accurate pseudo-labels can be advantageous for contrastive learning and class
prototype assignment. As the training progresses, we gradually relax the threshold
to allow a broader range of supervoxels to be pseudo-labeled, aiming to enhance the
semantic segmentation performance.

However, our experimental results, as shown in Table 5.10, reveal that using a
constant threshold throughout the training process yields better results in terms of
3D mIoU. The constant threshold maintains a consistent criterion for pseudo-labeling,
ensuring a more stable and reliable training process. Although the dynamic threshold
approach demonstrates higher precision and recall in the pseudo-labeling process, it
does not translate into improved 3D mIoU scores.

These findings suggest that the stability and consistency provided by a constant
threshold are crucial for optimizing the semantic segmentation performance. While
a dynamic threshold may enable a broader coverage of supervoxels and potentially
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Method mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

Constant Threshold 59.06 73.03 82.85 1.152.212
Dynamic Threshold 58.50 75.53 87.07 765.510

Table 5.10: Impact of threshold relaxation during training on segmentation performance,
measured by mIoU (%). Despite higher precision and recall with a dynamic
threshold, a constant threshold yields better mIoU, emphasizing the impor-
tance of stability and consistency in pseudo-labeling.

capture a wider range of semantic classes, it also introduces more noise and may
compromise the accuracy of the pseudo-labeling process.

5.5.8 Removal of wrongly classified pseudo-labels

We implemented a mechanism to periodically remove wrongly classified pseudo-labels
to ensure the integrity of the pseudo-labeling process. Table 5.11 presents the results
obtained with and without the removal of wrongly classified pseudo-labels. Our
evaluation showed that the removal of wrongly classified pseudo-labels had a limited
impact on the mIoU and recall, but we observed a slight improvement in precision.
The total number of pseudo-labels remained relatively consistent, suggesting that the
model maintained its confidence in the assigned labels.

Method mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

Without removal 59.06 73.03 82.85 1.152.212
With removal 58.99 73.53 82.83 1.151.730

Table 5.11: Impact of removing wrongly classified pseudo-labels on segmentation per-
formance, measured by mIoU (%). While the removal process has a limited
impact on mIoU and recall, it slightly improves precision, indicating a more
accurate pseudo-labeling process.

However, our approach of using the same model for both pseudo-labeling and
segmentation might have limitations in accurately identifying and discarding wrongly
classified pseudo-labels which may be a reason why OTOC [2] employed a separate
model for pseudo-labeling.
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5.5.9 Different Oversegmentation Methodologies

ScanNetv2 [4] provides a conservative oversegmentation of the mesh through a graph
cut method, resulting in a clean oversegmentation that preserves object boundaries
without introducing noise. We refer to this oversegmentation as GT oversegmentation.
While propagating sparse labels to the oversegmented supervoxels using the GT over-
segmentation, the learning process remains free from noise, and the average pooled
features learned from these supervoxels better capture the characteristics of each class,
as they align with the object boundaries.

Table 5.12 presents the quantitative comparison between using the oversegmentation
acquired from VCCS and GT oversegmentation for our methodology.

Oversegmentation mIoU (%) Precision Recall
Pseudo-labeled

Supervoxels

VCCS [12] 59.06 73.03 82.85 1.152.212
GT 59.36 73.86 85.33 440.843

Table 5.12: Comparative performance of VCCS and GT oversegmentation methods in
terms of mIoU (%). Despite a lower number of pseudo-labeled supervoxels,
GT oversegmentation yields superior segmentation results, highlighting the
importance of accurate initial oversegmentation.

Our comparative analysis between VCCS [12] oversegmentation and GT oversegmen-
tation, as utilized in OTOC [2], reveals the superior performance achieved with GT
oversegmentation in terms of 3D mIoU, precision, and recall. Despite the significantly
lower number of pseudo-labeled supervoxels obtained through GT oversegmentation,
it yields better segmentation results.

In our exploration of different pseudo-labeling approaches in section 5.5.3, we estab-
lished that a higher number of pseudo-labeled supervoxels generally leads to improved
segmentation scores. However, in the case of GT oversegmentation, we observed that
even with a lower number of pseudo-labeled supervoxels, the segmentation quality
is enhanced. This phenomenon can be attributed to the cleaner and less noisy nature
of GT oversegmentation, enabling the selection of a smaller yet more reliable set of
supervoxels for pseudo-labeling. This finding underscores the significant impact of
oversegmentation noise on the overall segmentation performance.

While the utilization of GT oversegmentation proves advantageous for semantic
segmentation, it is important to acknowledge that obtaining ground truth oversegmen-
tation in practical scenarios is infeasible. Nevertheless, this ablation study underscores
the critical role of accurate initial oversegmentation in the pseudo-labeling of point
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(a) VCCS [12] (b) GT

Figure 5.3: Visual comparison of VCCS and GT oversegmentation methods. The images
illustrate the differences in oversegmentation quality between the two meth-
ods, with GT oversegmentation providing cleaner and less noisy supervoxel
boundaries.
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clouds, reaffirming the importance of addressing oversegmentation noise for optimal
segmentation outcomes. The visual comparison of VCCS and GT oversegmentation
methods, as shown in Figure 5.3, further illustrates the differences in oversegmentation
quality between the two methods, with GT oversegmentation providing cleaner and
less noisy oversegmentations.
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6 Conclusion

The work presented in this thesis aimed to tackle the challenges associated with weakly
supervised point cloud semantic segmentation, introducing an innovative approach
that leverages multi-modal information and advanced pseudo-labeling techniques. Our
methodology effectively brings together the valuable geometric information from 2D
and 3D correspondences, thereby enhancing the results of point cloud segmentation.

One of the cornerstone contributions of this research is the development of a com-
prehensive framework that integrates multi-modal information into the contrastive
learning process. This robust framework leverages oversegmentation to tackle sparse
labels, enhancing class representations and leading to a more informative latent space
construction. As a result, the overall performance of the contrastive framework is
enhanced.

Another significant achievement of this work is the incorporation of the 2D modality
into the pseudo-labeling process. This approach allowed us to take advantage of the
complementary information provided by the 2D modality, generating accurate and reli-
able confidence pseudo-labels that guide the learning process and boost segmentation
performance.

Furthermore, our methodology introduces an online adaptive pseudo-labeling mech-
anism, which dynamically adapts to evolving model predictions, eliminating the need
for an additional network for generating pseudo-labels. This makes the process more
efficient and scalable.

Despite these significant contributions, the research also revealed areas that require
further investigation. Notably, the integration of the 2D modality into the pseudo-
labeling process improved the precision and recall of pseudo-labeling, but it did not
lead to a corresponding increase in the mIoU compared to pseudo-labeling using only
the 3D modality. This unexpected outcome suggests potential for further refinement in
our methodology, such as addressing the noise in oversegmentation, and superpixel
generation.

The exploration of this noise in superpixel generation will be a focus of future
research. By understanding and mitigating this noise, it could be possible to more
effectively leverage the 2D modality, leading to improvements in the mIoU score. This
will open up new opportunities for refining the current methodology and developing
more effective semantic segmentation models.
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CRF conditional random field

FCN Fully Convolutional Network

ViT Vision Transformer

CNN Convolutional Neural Network
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SQN Semantic Query Network
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